Continuum Limits of Particles Interacting via Diffusion

نویسندگان

  • NICHOLAS D. ALIKAKOS
  • GIORGIO FUSCO
چکیده

We consider a two-phase system mainly in three dimensions and we examine the coarsening of the spatial distribution, driven by the reduction of interface energy and limited by diffusion as described by the quasistatic Stefan free boundary problem. Under the appropriate scaling we pass rigorously to the limit by taking into account the motion of the centers and the deformation of the spherical shape. We distinguish between two different cases and we derive the classical mean-field model and another continuum limit corresponding to critical density which can be related to a continuity equation obtained recently by Niethammer and Otto. So, the theory of Lifshitz, Slyozov, and Wagner is improved by taking into account the geometry of the spatial distribution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interacting Brownian motions in infinite dimensions with logarithmic interaction potentials

We investigate the construction of diffusions consisting of infinitely numerous Brownian particles moving in R and interacting via logarithmic functions (2D Coulomb potentials). These potentials are really strong and long range in nature. The associated equilibrium states are no longer Gibbs measures. We present general results for the construction of such diffusions and, as applications thereo...

متن کامل

Diffusion of multiple species with excluded-volume effects.

Stochastic models of diffusion with excluded-volume effects are used to model many biological and physical systems at a discrete level. The average properties of the population may be described by a continuum model based on partial differential equations. In this paper we consider multiple interacting subpopulations/species and study how the inter-species competition emerges at the population l...

متن کامل

Notes on Diffusion in Collisionless Medium

A collisionless continuous medium in Euclidean space is discussed, i. e. a continuum of free particles moving inertially, without interacting with each other. It is shown that the distribution density of such medium is weakly converging to zero as time increases indefinitely. In the case of Maxwell’s velocity distribution of particles, this density satisfies the well-known diffusion equation, t...

متن کامل

A continuum model for nematic alignment of self-propelled particles

A continuum model for a population of self-propelled particles interacting through nematic alignment is derived from an individual-based model. The methodology consists of introducing a hydrodynamic scaling of the corresponding mean-field kinetic equation. The resulting perturbation problem is solved thanks to the concept of generalized collision invariants. It yields a hyperbolic but non-conse...

متن کامل

Long-time self-diffusion for Brownian Gaussian-core particles

Using extensive Brownian dynamics computer simulations, the long-time self-diffusion coefficient is calculated for Gaussian-core particles as a function of the number density. Both spherical and rod-like particles interacting via Gaussian segments are considered. For increasing concentration we find that the translational self-diffusion behaves non-monotonically reflecting the structural reentr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004